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Abstract 1 
 2 

An observation product for thin sea ice thickness (SMOS-Ice) is derived from 3 

the brightness temperature data of the European Space Agency’s (ESA) Soil 4 

Moisture and Ocean Salinity (SMOS) Mission, and available in real-time at 5 

daily frequency during the winter season. In this study, we investigate the 6 

benefit of assimilating SMOS-Ice into the TOPAZ system. TOPAZ is a coupled 7 

ocean-sea ice forecast system that assimilates SST, altimetry data, 8 

temperature and salinity profiles, ice concentration, and ice drift with the 9 

Ensemble Kalman Filter (EnKF). The conditions for assimilation of sea ice 10 

thickness thinner than 0.4m are favorable, as observations are reliable below 11 

this threshold and their probability distribution is comparable to that of the 12 

model. Two paralleled runs of TOPAZhave been performed respectively in 13 

March and November 2014, with assimilation of thin sea ice thickness (thinner 14 

than 0.4 m) in addition to the standard ice and ocean observational data sets. 15 

It is found that the RMSD of thin sea-ice thickness is reduced by 11% in March 16 

and 22% in November suggesting that SMOS-Ice has a larger impact during 17 

the beginning of freezing season. There is a slight improvementof the ice 18 

concentration and no degradation of the ocean variables. The Degrees of 19 

Freedom for Signal (DFS) indicate that the SMOS-Ice contents important 20 

information (> 20% of the impact of all observations)for some areas in the 21 

Arctic. The areas of largest impact are the Kara Sea, the Canadian 22 

archipelago, the Baffin Bay, the Beaufort Sea and the Greenland Sea. This 23 

study suggests that SMOS-Ice is a good complementary dataset that can be 24 

safely included in the TOPAZ system as it improves the ice thickness and the 25 

ice concentration but does not degrade other quantities. 26 

 27 
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1. Introduction 1 
 2 
The Arctic climate system has undergone large changes during the last 20 3 

years: increase of temperature (Chapman and Walsh, 1993; Serreze et al., 4 

2000; Karl et al., 2015; Roemmich et al., 2015), decrease of sea ice extent 5 

(Chapman and Walsh, 1993; Johannessen et al., 1999; Shimada et al., 2006;), 6 

sea ice thinning and loss of sea ice volume (Rothrock et al., 1999; Kwok and 7 

Rothrock, 2009; Laxon et al., 2013). The interpretation of such changes is 8 

severely hampered by the sparseness and the deversity of observational 9 

network. The reanalysis database that combines the sparse observations with 10 

dynamically consistent modeling is becoming an important tool. 11 

While observations of sea ice concentrations have been available for the 12 

past 30 years, observations of sea ice thickness are comparatively sparse. An 13 

improved knowledge of the ice thickness would be greatly beneficial both for 14 

model developments and for improving the accuracy of operational ocean 15 

forecasting system.The initialization of sea-ice thickness is also expected to 16 

improve predictability on seasonal time scale (Guemas et al. 2014). Until the 17 

last decade, observations of sea-ice thickness were mostly limited to field 18 

campaigns or submarine measurements. Major efforts in remote sensing have 19 

been proposed to monitor the spatiotemporal evolution of ice thickness, and 20 

gradually obtained vairious products from different satellite retrieval algorithms. 21 

Measurements of thick sea ice draft on basin-wide scales have been derived 22 

from laser altimeters on board ICESat (e.g., Forsberg and Skourup, 2005; 23 

Kurtz et al., 2009; Kwok and Rothrock, 2009) or from radar altimeters on ERS, 24 

EnviSAT and CryoSat2 (e.g., Laxon et al., 2003; Giles et al., 2008; Connor et 25 

al., 2009). Still large uncertainties remain in the accuracy of the resulting ice 26 

thickness estimates (larger than 0.5 m) due to uncertainties in the snow depth 27 

and the sea ice density (Zygmuntowska et al., 2014). A new database based 28 

on Cryostat-2 has been provided (Laxon 2013; Ricker et al., 2014) and has 29 

been made available in near real time (Tilling et al. 2016). Finally, methods for 30 

sea ice thickness retrieval based on measurements of the brightness 31 

temperature at a low microwave frequency of 1.4 GHz (L-band: wavelength 32 

λa=21 cm) have been developed in preparation for the European Space 33 

Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (Heygster et 34 
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al., 2009; Kaleschke et al., 2010). It has been shown that SMOS can be used 1 

to retrieve level ice thickness up to half a meter under cold conditions 2 

(Kaleschke et al., 2012; Huntemann el al., 2014). 3 

An improved retrieval method based on a radiative transfer model and a 4 

thermodynamic sea ice model has been further proposed by considering 5 

the variations of ice temperature, salinity and a statistical thickness distribution 6 

(Tian-Kunze et al., 2014). The operational daily product derived using this 7 

method, henceforth called SMOS-Ice, has been validated during a field 8 

campaign in the Barents Sea (Kaleschke et al., 2016; Mecklenburg et al., 9 

2016) and will be used in this study. Aiming at the operational application of 10 

the thickness measurements for sea ice, the SMOS-Ice data contain daily 11 

products of sea ice thickness since the winter of 2010 (Tian-Kunze et al., 2014). 12 

Yang et al. (2015) studied the benefit of SMOS-Ice during the freezing period, 13 

with the LSEIK (an assimilation methodrelated to the EnKF) in a nested Arctic 14 

configuration of the MITgcm. They found that SMOS-Ice leads to improvement 15 

of ice thickness and ice concentration. This study is a follow up and assess: 1) 16 

the impact of assimilating SMOS-Ice both during the beginnings of melting and 17 

freezing seasons; 2) the relative contribution of SMOS-ice compared to a 18 

complete set of observationstypically used in a state of the art forecasting 19 

system. 20 

  The TOPAZ system is a coupled ocean-sea ice data assimilation system that 21 

focuses on the marine environment in the Arctic region. It is the operational 22 

Arctic forecast system in the Copernicus Marine Services 23 

(http://marine.copernicus.eu/). The system provides 10-days coupled physical-24 

biogeochemical forecast every day and long-term reanalysis (Sakov et al., 25 

2012; Lien et al., 2016; Xie et al., 2016). At present, the TOPAZ system 26 

assimilates the Sea Surface Temperature (SST), along-track Sea Level 27 

Anomalies (SLA) from satellite altimeters, in situ temperature and salinity 28 

profiles, Sea Ice Concentration (ICEC) and sea ice drift data from satellites 29 

with the Ensemble Kalman Filter (EnKF). The reanalysis product of the TOPAZ 30 

system has been widely used in studies about ocean circulation and sea ice in 31 

the northern Atlantic Ocean or in the Arctic region (Melsom et al., 2012; 32 

Johannessen et al., 2014; Korosov et al., 2015; Lien et al., 2016). However, 33 

TOPAZ does not assimilate sea ice thickness, and does not apply postprocess 34 
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for this variable. In the Arctic reanalysis, the daily sea ice thickness of TOPAZ 1 

for the period 1991-2013 has been validated and compared to the 2 

observations from ICESat and IceBridge in Xie et al. (submitted in 2016). While 3 

the spatial pattern and regression compare reasonably well, the large biases 4 

exist. Inaccuracy in the ice thickness is a drawback of coupled ice-ocean 5 

models in the Arctic (Johnson et al., 2012; Smith et al., 2015).  6 

   This paper is organized as follows: section 2 introduces the main 7 

components of TOPAZ system including the model, the assimilation scheme, 8 

and the observations assimilated. In section 3, we compare SMOS-ice data to 9 

the TOPAZ reanalysis for the period 2010-2013, to investigate potential biases 10 

and whether conditions are favorable for data assimilation. In section 4, an 11 

Observing System Experiment (OSE) is conducted, consisting of two 12 

assimilation runs with and without assimilating the SMOS-Ice data during 2014. 13 

In Section 5, we comparedthe contributions of SMOS-Ice relative to other 14 

types of observations.  15 

 16 
2. Descriptions of TOPAZ data assimilation system 17 

 18 
2.1  The coupled ice-ocean model 19 

 20 
The ocean general circulation model used in the TOPAZ system is the version 21 

2.2 of the Hybrid Coordinate Ocean Model (HYCOM) developed at University 22 

of Miami (Bleck, 2002; Chassignet et al., 2003). HYCOM uses a hybrid vertical 23 

coordinate, which smoothly transits from isopycnal layers in the stratified open 24 

ocean to z-level coordinates in the unstratified surface mixed layer. This 25 

feature has been demonstrated in a wide range of applications from the deep 26 

oceans to the shelf (Winther and Evensen, 2006; Chassignet et al., 2009). The 27 

NERSC-HYCOM model is coupled to a sea-ice model for which the ice 28 

thermodynamics are described in Drange and Simonsen (1996) and theice 29 

dynamics are based on the elastic-viscous-plastic rheology described in 30 

Hunke and Dukowicz (1997) and with a modification from Bouillon et al. 31 

(2013). TOPAZ uses conformal mapping (Bentsen et al., 1999) and has a 32 

quasi-homogeneous horizontal resolution of 12-16 km in the Arctic as shown 33 

in Fig. 1. 34 
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The temperature and salinity at model lateral boundaries are relaxed to a 1 

combined climatology between the World Atlas of 2005 (WOA05, Locarnini et 2 

al., 2006) and the version 3.0 of the Polar Science Center Hydrographic 3 

Climatology (PHC, Steele et al., 2001). A seasonal inflow from the Pacific 4 

Ocean through the Bering Strait is imposed, which amplitude is following the 5 

observations from Woodgate et al. (2012).  6 
 7 

2.2  Implementation of the EnKF in TOPAZ 8 
 9 
The analysis field of model state at time of ti, is expressed as follows: 10 

                                  (1). 11 

Where Xi is the model state vector, the superscripts “a” and “f” refer to the 12 

analysis and the forecast respectively. The ensemble consists of 100 13 

dynamical members. Hi is the observation operator and yi is the observation 14 

vector, which includes all observations at the assimilation time window. The 15 

Kalman gain Ki in Equation (1) is calculated as: 16 

                                         (2). 17 

Where Ri is the matrix of observation error variance, and Pi is the matrix of 18 

background error covariance. The TOPAZ system uses the deterministic EnKF 19 

(DEnKF, Sakov and Oke, 2008; Sakov et al., 2012), which is a square-root 20 

filter implementation of the EnKF. The covariance Pa is equal to 21 

                               (3) 22 

Compared to the traditional estimation of the analyzed error covariance, the 23 

extra term is quadratic and positive. It induces an overestimation of the 24 

analyzed error covariance,which partially compensates the need for ensemble 25 

inflation. 26 

An overview of the observations assimilated in the present TOPAZ system is 27 

given in Table 1 (see as well Sakov et al, 2012; Xie et al., submit in 2016). 28 

Observations are quality controlled and superobed as in Sakov et al (2012). 29 

The system assimilates the following data set on a weekly basis: the gridded 30 

OSTIA SST (Donlon et al., 2012); OSI-SAF ice concentration available for the 31 

analysis day; along-track SLA; delayed-mode profiles of temperature and 32 

salinity, and the sea-ice drift during the 2 days prior to the analysis. All 33 
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measurements are retrieved from http://marine.copernicus.eu. SLA data and 1 

sea ice drift are assimilated asynchronously as described in Sakov et al. (2010) 2 

 3 

3. Bias analyses for thin ice thickness in TOPAZ 4 
 5 
TOPAZ provides a reanalysis at daily frequency of physical variables including 6 

sea ice thickness, which was validated by in situ and satellite observations in 7 

Xie et al. (2016). An assumption made for data assimilation is that the model 8 

and observations have unbiased mean and uncertainties estimates. Therefore, 9 

we investigate in this section the biases in the thickness of thin sea ice during 10 

four winters from 2010-2014.  11 

SMOS-Ice products are available since 2010 in the winter months, from 15th 12 

October to 15th April. Figure 2 shows the TOPAZ ice thickness as conditional 13 

expectations with respect to SMOS-Ice data organized by bin of 5 cm. The 14 

TOPAZ equivalent ice thickness is calculated at observations location and time. 15 

The error bars show the observation uncertainty (in red) and the TOPAZ 16 

RMSD (in cyan) compared to the observations of the bin. Overall, the sea ice 17 

thickness in TOPAZ tends to be overestimated. However, the comparison 18 

varies largely form month to monthand as a function of ice thickness, 19 

especially for thick ice. As an example, the model overestimates the high 20 

thickness values (>0.4 m) during October. However, during November the 21 

model underestimates the high thickness values (>0.4 m), while it largely 22 

overestimates them in Feb-Apr. For thicknesses lower than 0.4 m, the match 23 

between the observations and the simulations of TOPAZ is closer and more 24 

consistent through the winter season and in consecutive bins.There is no clear 25 

bias from October–December but an increasing thick bias from January-April. 26 

There is a priori no indication whether the bias is a model bias or an 27 

observation bias. In order to avoid multivariate transfers of bias, whichever the 28 

source, the assimilation of SMOS-Ice is restrained to thicknessless than 0.4 m. 29 

This is also motivated by physical considerations on the wavelength of L-Band 30 

microwaves. The penetration depth into sea ice is about 0.5 m at this 31 

microwave frequency (Kaleschke et al., 2010; Huntemann et al., 2014), and 32 

the effect of ice melting may lead to a saturation thickness of less than 0.4 m, 33 

(see Heygster et al. (2009)). 34 
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Furthermore, relative to the thickness observations of SMOS-Ice for the thin 1 

sea ice no more than 0.4 m, the yearly bias in the period 2010-2014 are shown 2 

by the black lines in Fig. 3. After 2011, the thick bias is increased, and reaches 3 

about 0.1 m in 2014. The thick bias in March is also found lagerthan that in 4 

November. Also the spatial variability of the bias is shown in the right panel of 5 

Fig.3, with the bias being largest in the Beaufort Sea and in the Kara Sea. In 6 

2014, there is a thick bias in all regions. 7 

 8 

4. Observing System Experiment of SMOS-Ice 9 
 10 

4.1 Design of OSE runs for the SMOS-Ice 11 
 12 

The SMOS-Ice ice thickness data (version 2.1) is gridded at a resolution of 13 

approximately 12.5 km and available at daily frequency in winter months. Only 14 

the observations between 0 and 0.4 m, with a distance of at least 30 km away 15 

from the coast, are used (See Section 3). The innovations in Equation (1) are 16 

expressed as a sea ice volume, which is an additive variable suited for spatial 17 

interpolation: 18 

                                    (4) 19 

where H is the bilinear interpolation, hmod and fmod are the model sea ice 20 

thickness and concentration respectively. To highlight the additional impacts of 21 

observations, two assimilation runs for Observing System Experiment (OSE) 22 

are named as follows: 23 

-Official Run: usesthe standard observational network of the TOPAZ system. 24 

It assimilates weekly the along-track SLA (TSLA), SST, in situ profiles of 25 

temperature and salinity, sea-ice concentrations and sea-ice drift data (listed in 26 

Table 1).  27 

-Test Run: assimilates SMOS-Ice data (version 2.1) in addition to 28 

observations assimilated in the official run. The observation error standard 29 

deviation of the sea ice thickness uses the uncertainties recommended by the 30 

provider, with an upper limit of 5 m beyond which the observations are 31 

assumed to have negligible impacts. The observation error is assumed 32 

spatially uncorrelated. 33 
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We have two parallel assimilation runs focusing on two typical time periods 1 

within the beginnings of ice melting and freezing, from 19th February to 31th 2 

March and from 22th October to 30th November in 2014. Both runs are driven 3 

by the same atmospheric high frequency forcing from ERA-Interim (Simmons 4 

et al., 2007; Dee et al., 2011). Finally, the daily averaged outputs in March and 5 

November are used for the evaluation.  6 

 7 

4.2 Error analysis in the OSE runs 8 
The analysis focuses on the following target quantities as listed in Table 1: sea 9 

ice thickness (from SMOS-Ice), sea ice concentration, SST and SLA. All 10 

quantities are calculated from daily averages, and we calculate the bias and 11 

the RMSD: 12 

                          (5) 13 

,                      (6) 14 

where 𝐗𝐗�𝐢𝐢𝐟𝐟 is the daily averaged forecast of the model variables, which  is 15 

compared to the observation on the same location and time. 16 

 17 

The spatial distribution of selected SMOS-Ice data for thin sea ice is shown in 18 

the top panels of Fig. 4during March and November of 2014. In March, the 19 

available observations in the Beaufort Sea are very few, and 20 

inhomogeneously distributed - mainly located in the coastal esturay areas. 21 

Therefore in the following analysis, we will only present the result in the 22 

Beaufort Sea for November. In the middle panels of Fig. 4, the differences of 23 

RMSD for sea-ice thickness between the Official Run and the Test Run are 24 

shown (red color indicates an improvement due to assimilation of SMOS-Ice). 25 

In March, the improvements are mainly found to the east of Franz Josef Land 26 

and to some extent near the ice edge in the Greenland Sea. In November, the 27 

reduction of RSMD is larger than 0.2 m in the Beaufort Sea, the Greenland 28 

Sea and to the north of Svalbard. Finally, the differences of monthly ice 29 

thickness between the Official Run and the Test Run are shown in the 30 
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bottom panels of Fig. 4.It suggests that the impact of assimilating SMOS-Ice 1 

leads to a reduction of sea-ice thickness both in March and November of 2014.  2 

 The time series of daily bias and RMSD for thin ice thicknesses in the OSE 3 

runs are shown in the top panels of Fig. 5. The bias of thin sea-ice thickness is 4 

reduced from 16 cm to 12 cm in March, and from 7 cm to 4 cm in November, 5 

when SMOS-Ice data is assimilated. The RMSD of thin sea ice is reduced 6 

from 35 cm to 31 cm in March, and from 27 cm to 21 cm in November. This 7 

corresponds to a reduction of the bias of 25% in March and 43% in November, 8 

and a reduction of the RMSD of about 11% in March and 22% in November. In 9 

the other panels of Fig. 5, the bias and RMSD of sea ice concentration, SST 10 

and SLA are presented. There is a slight benefit for the bias and RMSD of sea 11 

ice concentration, but the statistics for SST and SLA are unchanged.  12 

Moreover, the time evolution of the averaged thicknesses of thin sea-ice in the 13 

marginal seas - in the Kara Sea, Barents Sea and Beaufort Sea - are 14 

highlighted with the marked lines in the panels of Fig. 6. The corresponding 15 

daily RMSDs of ice thickness relative to thin SMOS-Ice data are added with 16 

shading. In each month, there are four assimilations marked with the vertical 17 

lines.  18 

In the Kara Sea,the thickness observed in March isvery stable with a slight 19 

gradual increase. There is a relatively uniform reduction of RMSD by about 20 

21%, which is mainly the result from a correction of the large (too thick) bias in 21 

the model. In November, the bias is much smaller and the resulting 22 

improvement is smaller (8%) but the performances are improving slightly 23 

through the month for RMSD. 24 

In the Barents Sea, in March, the observations show an increasing trend. The 25 

official run shows initially a large (thick) bias that is reduced as the thickness 26 

increase in the observation. Assimilation of SMOS-Ice data reduces well the 27 

initial bias, but the bias converges with the official run at the end of the month 28 

and so is the RMSD. On average, the RMSD of ice thickness is decreased 29 

about 27% from the Test Run. In November, the observations show large 30 

variability that is well captured in the Official Run but the ice is initially too 31 

thick. The RMSD reduction is about 19% from the Test Run compared to from 32 

the Official Run and both the bias and the variability seem to be reduced. 33 
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In the Beaufort Sea, there are too few observations to provide a representative 1 

estimate of the system performance in March (top panels of Fig. 4) and the 2 

statistic are not presented. In November, the observations shows an increasing 3 

trend and the official run shows once more a relatively large thick bias initially. 4 

The RMSD in the Test Run is reduced by about 51%，which ismainly caused 5 

by areduction of the bias. The increasing trend in the Test Run is in relatively 6 

well agreement with the observations. 7 

 8 
5. Relative impact of SMOS-ice to the existing observation 9 

network 10 
In this Section,the additional benefit of assimilating SMOS-Ice into the TOPAZ 11 

system is quantitatively compared to the standard observation network used. 12 

To do so, we evaluate a metric calculated during the analysis, the Degree of 13 

Freedom for Signal (DFS), which is now widely used for such purpose 14 

(Rodgers, 2000; Cardinali et al., 2004). During the assimilation,one can 15 

calculate the DFS as following: 16 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑡𝑡𝑡𝑡 �𝜕𝜕𝑦𝑦�
𝜕𝜕𝑦𝑦
� = 𝑡𝑡𝑡𝑡 �𝜕𝜕[𝐻𝐻(𝑋𝑋𝑎𝑎 )]

𝜕𝜕𝑦𝑦
� = 𝑡𝑡𝑡𝑡(𝐾𝐾𝐻𝐻)              (7) 17 

DFS quantifies the reduction of mode that can be attributed to each 18 

observation type. A value of DFS close to 0 means that the observation had no 19 

update, while a value of m means that the assimilation has reduced the 20 

number of degree of freedom of the ensemble by m. Note that the reduction 21 

cannot exceed the ensemble size; i.e. 100 here. In Sakov et al. (2012), it was 22 

proposed that a system should in fact not exceed 10 % of the ensemble size to 23 

avoid a collapse of the ensemble. 24 

In Fig. 7, we are presenting the mean of the spatial DFS (Eq.8) in March and 25 

November. 26 

                                     (8). 27 

where M is the total number of assimilating times within the specific time 28 

period (here 4). In the Arctic the total DFS is dominated by the ice 29 

concentration with large value near the ice edge. The DFS for SMOS-Ice is 30 

comparatively smaller. It is larger in March than in November. However, in 31 

some region, the monthly DFS of SMOS-ice reaches value larger than 2.  32 
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Figures of 8 and 9 show the relative contribution of each observational data set 1 

calculated as follows: 2 

                     (9). 3 

where O is the number of the used observation types. As expected, the 4 

assimilation of ice concentration dominates the total DFS, while the impacts of 5 

SST and SLA are limited to the region that are not ice covered. Profiles in the 6 

Arctic are the ice-tethered profiles. They have a very large impact but that are 7 

very sparse. In March the SMOS-ice data has a significant impacts (> 20 % of 8 

the total DFS) in the Northern Barents Sea, the western Kara Sea, in the Baffin 9 

Bay, in the Greenland Sea and in the Hudson Bay. In November, the relative 10 

contribution is still large in the Barents Sea, the Kara Seas and the Greenland 11 

Sea, but it is now also large in the Beaufort Sea, and in the Canadian 12 

Archipelagos. 13 

 14 
6. Summary and Discussion 15 

   The thickness observations of thin sea ice in the Arctic can be derived from 16 

SMOS brightness temperature at 1.4 GHz (Tian-Kunze, et al., 2014; 17 

Kaleschke et al., 2016). This data set is available in near real time since 2010 18 

at daily frequency. This study investigates the impact of assimilating this data 19 

set within TOPAZ system, which is the Arctic component of the Copernicus 20 

Marine Services.  It is shown that for thin ice (less than 0.4 m), TOPAZ 21 

reanalysis and the SMOS-Ice have comparable distribution, but TOPAZ 22 

reanalysis tends to overestimate thin ice thickness, especially from January to 23 

April.  24 

   We compare the benefit of assimilating SMOS-ice (thinner than 0.4) in 25 

TOPAZ system that already assimilates ice concentration, SST, SSH and 26 

temperature and salinity profiles. The comparison is carried out for two periods: 27 

February-March and October-November of 2014. The study shows that the 28 

assimilation of SMOS-Ice data reduces the thickness RMSD of thin sea-ice in 29 

March and in November by about 11% and 22% respectively, mainly caused 30 

by the reduction of the bias (too thick sea ice that seems larger in 2014 than in 31 

previous years). As in Yang et al. (2015) we find that there is slight 32 
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improvement in the ice concentration, the RMSD for SST and SLA remains 1 

unchanged but not degraded. 2 

 In this study, the DFS has been used to evaluate the relative contributions of 3 

assimilated observations to the reduction of error in TOPAZ system. The 4 

SMOS-Ice data have a smaller impact than ice concentration, but has relative 5 

high contributions in some areas.In the Greenland Sea, the Kara Sea and the 6 

Barents Sea, a significant contribution (defined as larger than 20 % of the total 7 

impact from all observations) is found both in March and November. In the 8 

Baffin Bay and Hudson Bay, the significant contributions are also found in 9 

March. In the Beaufort Sea and in the Canadian archipelagos, there is a large 10 

contribution in November. 11 

To conclude, we found that the assimilation of SMOS-ice has an important role 12 

to reduce the thick biases at some regions for the sea ice thickness in the 13 

Arctic. It is also encouraging that the assimilation of this data set does not 14 

degrade other variables (SST, SLA, ICEC and ice drift). This suggests that 15 

SMOS-Ice can be assimilated without degradation of other skills in the 16 

operational forecasting system and included in the future runs or the extension 17 

of the reanalysis. However, further work needs to be done to better 18 

understand the uncertainty of the assimilated sea ice thickness from the 19 

SMOS-Ice. Some information, like a measure of “saturation ratio” which is 20 

defined by the relationship of the variable L-band penetration depth and the 21 

maximal retrieval thickness as a function of temperature and salinity, may be 22 

helpful for the next assimilation running.  23 

In additional, the satellite sensor of CryoSat-2 provides data of the freeboard 24 

height can be complementary with the sensor of SMOS (Kaleschke et al., 25 

2010). The new sea ice thicknesses derived from the combined information 26 

from SMOS and CryoSat-2 will be soon available (Kaleschke et al., 2015). 27 

Hebert et al. (2016) presented a blended sea ice thickness from Cryosat-2 and 28 

SMOS, in which the thicknesses thinner than 0.45 m are kept from SMOS. The 29 

blended sea ice thickness has been implemented into the U.S Navy Arctic Cap 30 

Nowcast/Forecast System (ACNFS) for one year. This kind combined 31 

observations for sea ice thickness may provide more reliable estimates, and 32 

give more potential abilities to improve the forecast performance in an 33 

operational ocean system by data assimilation. 34 
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Table 1. Overview of assimilated observations in each assimilation cycle of the 

present TOPAZ system. All observations are retrieved from 

http://marine.copernicus.eu. 
Type Spacing  Resolution Provider 
SLA Track  - CLS 
SST Gridded 5 km OSTIA from UK Met Office 
In-situ T  Point - Ifremer + other 
In-situ S  Point - Ifremer + other 
ICEC Gridded 10 km OSISAF 
Ice drift Gridded 62.5 km OSISAF 
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Fig.	 1	 TOPAZ	 model	 domain	 and	 horizontal	 grid	 resolution	 (km)	 with	 color	

shading.	The	blue	line	delimits	the	focused	Arctic	region	(north	of	63°N)	and	
other	color	lines	delimit	the	three	marginal	seas	discussed	in	this	study.	

	
	
	 	

The Cryosphere Discuss., doi:10.5194/tc-2016-112, 2016
Manuscript under review for journal The Cryosphere
Published: 6 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



20	
	

	
	
	
	

	
	
Fig.	 2 Conditional	 expectations	of	TOPAZ	versus	 SMOS-Ice	 (with	bin	of	5	 cm)	 for	

the	period	2010-2014 and	for	each	month.The	cyan	error-bars	correspond	to	

the	 RMSD	 against	 all	 observations	 within	 each	 bin.	 The	 red	 error-bars	

correspond	 to	 averaged	 standard	deviations	 of	 observation	 error.	 The	 gray	

dashed	line	denotes	the	line	y=x.	
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Fig.	 3	 Yearly thickness	 biases	 of	 thin	 sea	 ice	 from	TOPAZ	 compared to	 SMOS-Ice	

observations.	The	black	line	represents	the	yearly	mean	bias.	Left:	the	green	

(resp.	red)	line	represents	the	mean	bias	for	March	(resp.	November)	of	each	

year. Right:	 the	colored lines represent the	mean	biases	 in	the	Barents	Sea,	

the	Kara	Sea,	and	the	Beaufort	Sea.	
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Fig.	4 Top:	SMOS-Ice	data assimilated	in	the	modelin	March	(left)	and	in	November	

(right).	Middle:	Difference	of	RMSDs	forthe	thin	sea-ice	thicknesses	between	

the Official	Run	and	the Test	Run	 in	March	(left)	and	in	November	(right). 

Bottom: Difference	of	mean	ice	thicknesses	between	the	two	runs.	The	black	

line	 denotes	 the	 0.2	 m	 isoline,	 the	 green	 (resp.	 orange)	 line	 is	 the	 15%	

concentration	isoline	from	OSISAF	(resp.	the	Official	Run).	
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Fig.	5 Daily	time	series	of	the	bias	(marked	with	crosses)	and	the	RMSD	(marked	

with	circles) in	the	whole	Arctic	for	the	Official	Run (in	blue)	and	the	Test	

Run	(in	purple)	for	different	variables	in	March	(Left)	and	November	(Right).	
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Fig.	6 Daily	time	series	of	the	mean	thickness	of	thin	sea-ice	in	the	Kara	Sea	

(upper),	 the	 Barents	 Sea	 (middle)	 and	 Beaufort	 Sea	 (bottom)	 for	

March	(left)	and	November	(right).	The	light	(resp.	dark)	gray	shading	

is	the	dailyspatial	RMSD	of	thin	sea	ice	in	the	Test	Run (resp. Official	

Run).	
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Fig.	7 Monthly	averaged	Degrees	of	Freedom	for	Signal	(DFS)	from	the	Test	Run	in	

March	(upper)	and	in	November	(lower)	for	SMOS-Ice	sea	ice	thickness	(left),	

sea	 ice	 concentration	 (middle),	 and	 the	 total	 DFS	 of	 all	 ice	 and	 ocean	

observations	(right).	The	black	line	denotes	the	isoline of	DFS	equal	to	2.	
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Fig.	8 Relative	contributions	of	each	observational	data	set	in	the	total	DFS	during	

March	 2014.	 Panel	 (a)	 is	 for	 sea	 ice	 concentration;	 (b)	 ice	 thickness	 from	

SMOS-Ice;	 (c)	 temperature	profiles;	 (d)	SST;	(e)	along-track	SLA;	(f)	salinity	

profiles.	The	black	line	is	the	20%	isoline.	
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Fig.	9 Same	as	Figure	8	for	November	2014	
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